Get Answers to all your Questions

header-bg qa

Concentric metallic hollow spheres of radii R and 4R hold charges Q_{1} and Q_{2} respectively. Given that surface charge densities of the concentric spheres are equal, the potential difference V(R)-V(4R) is :
Option: 1 \frac{3Q_{1}}{16\pi \varepsilon _{0}R}  
Option: 2 \frac{3Q_{2}}{4\pi \varepsilon _{0}R}
Option: 3 \frac{Q_{2}}{4\pi \varepsilon _{0}R}
Option: 4 \frac{3Q_{1}}{4\pi \varepsilon _{0}R}

Answers (1)

best_answer

\begin{array}{l} \sigma=\frac{Q_{1}}{4 \pi R^{2}}=\frac{Q_{2}}{4 \pi 16 R^{2}} \\ \\ 16 \mathrm{Q}_{1}=\mathrm{Q}_{2} \\ \\ V_{R}-V_{4 R}=\frac{K Q_{1}}{R}+\frac{K Q_{2}}{4 R}-\frac{K Q_{1}}{4 R}-\frac{K Q_{2}}{4 R}=\frac{3 K Q_{1}}{4 R}=\frac{3 Q_{1}}{16 \pi \varepsilon_{0} R} \end{array}

Posted by

avinash.dongre

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE