Get Answers to all your Questions

header-bg qa

A heating element has a resistance of 100 Ω at room temperature. When it is
connected to a supply of 220 V, a steady current of 2 A passes in it and temperature
is 500 \degree more than room temperature. What is the temperature coefficient of
resistance of the heating element ?

  • Option 1)

    0.5\times 10^{-4} \degree C^{-1}

  • Option 2)

    5\times 10^{-4} \degree C^{-1}

  • Option 3)

    1\times 10^{-4} \degree C^{-1}

  • Option 4)

    2\times 10^{-4} \degree C^{-1}

 

Answers (2)

As we have learned

Temperature dependent Resistivity -

\rho=\rho_{o}(1+ \alpha (T-T_{o}))

-

 

R_{0}= 100\Omega   at T= T_{0}+500, R= V/I=220/2=110\Omega

R=R_{0}(1+\alpha \Delta T)

110=100(1+\alpha 500)  or \alpha = \frac{0.1}{500}= 2*10^{-4} _{1}^{\degree}\textrm{C}

 

 

 

 

 

 

 

 


Option 1)

0.5\times 10^{-4} \degree C^{-1}

This is incorrect

Option 2)

5\times 10^{-4} \degree C^{-1}

This is incorrect

Option 3)

1\times 10^{-4} \degree C^{-1}

This is incorrect

Option 4)

2\times 10^{-4} \degree C^{-1}

This is correct

Posted by

Vakul

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE