Let y=y(x) be the solution of the fifferential equation,

\frac{\mathrm{d} y}{\mathrm{d} x}+ytanx=2x+x^{2}tanx, x\epsilon (\frac{-\pi}{2},\frac{\pi}{2}),

such that y(0)=1. Then :

  • Option 1)

    y(\frac{\pi}{4})+y(\frac{-\pi}{4})=\frac{\pi^{2}}{2}+2

  • Option 2)

    y'(\frac{\pi}{4})+y'(\frac{-\pi}{4})=-\sqrt2

  • Option 3)

    y(\frac{\pi}{4})-y(\frac{-\pi}{4})=\sqrt2

  • Option 4)

    y'(\frac{\pi}{4})-y'(\frac{-\pi}{4})=\pi-\sqrt2

 

Answers (4)

\frac{\mathrm{d} y}{\mathrm{d} x}+ytanx=2x+x^{2}tanx,

I.F.=e^{\int tanxdx}

I.F.=e^{\int tanxdx}=e^{\ln secx}=secx

Solution of DE

y\: secx=\int (2x+x^{2}tanx)secx \: dx+C

y\: secx=\int (2xsecx\: dx)+\int x^{2}tanx\: secx \: dx+C

y\: secx=x^{2}secx+C

Given y(0)=1

=>y\: =0^{2}+C\: cos0

=> C\: =1

y\: =x^{2}+cosx

y'=2x-sinx

y'(\frac{\pi}{4})=2(\frac{\pi}{4})-sin(\frac{\pi}{4})=2(\frac{\pi}{4})-\frac{1}{\sqrt2}

y'(-\frac{\pi}{4})=2(-\frac{\pi}{4})-sin(-\frac{\pi}{4})=-2(\frac{\pi}{4})+\frac{1}{\sqrt2}


Option 1)

y(\frac{\pi}{4})+y(\frac{-\pi}{4})=\frac{\pi^{2}}{2}+2

Option 2)

y'(\frac{\pi}{4})+y'(\frac{-\pi}{4})=-\sqrt2

Option 3)

y(\frac{\pi}{4})-y(\frac{-\pi}{4})=\sqrt2

Option 4)

y'(\frac{\pi}{4})-y'(\frac{-\pi}{4})=\pi-\sqrt2

Option 1

Option A

Preparation Products

Knockout JEE Main April 2021

An exhaustive E-learning program for the complete preparation of JEE Main..

₹ 22999/- ₹ 14999/-
Buy Now
Knockout JEE Main April 2022

An exhaustive E-learning program for the complete preparation of JEE Main..

₹ 34999/- ₹ 24999/-
Buy Now
Test Series JEE Main April 2021

Take chapter-wise, subject-wise and Complete syllabus mock tests and get in depth analysis of your test..

₹ 6999/- ₹ 4999/-
Buy Now
JEE Main Rank Booster 2021

This course will help student to be better prepared and study in the right direction for JEE Main..

₹ 13999/- ₹ 9999/-
Buy Now
Test Series JEE Main April 2022

Take chapter-wise, subject-wise and Complete syllabus mock tests and get an in-depth analysis of your test..

₹ 6999/-
Buy Now
Boost your Preparation for JEE Main 2021 with Personlized Coaching
 
Exams
Articles
Questions