\lim_{n\rightarrow \infty }(\frac{(n+1)^{\frac{1}{3}}}{(n)^{\frac{4}{3}}})+\frac{(n+2)^{\frac{1}{3}}}{(n)^{\frac{4}{3}}}+............+\frac{(2n)^{\frac{1}{3}}}{(n)^{\frac{4}{3}}}) 

is equal to :

  • Option 1)

    \frac{3}{4}(2)^{\frac{4}{3}}-\frac{3}{4}

  • Option 2)

    \frac{4}{3}(2)^{\frac{4}{3}}

  • Option 3)

    \frac{3}{4}(2)^{\frac{4}{3}}-\frac{4}{3}

  • Option 4)

    \frac{4}{3}(2)^{\frac{3}{4}}

 

Answers (1)
V Vakul

\lim_{n\rightarrow \infty }(\frac{(n+1)^{\frac{1}{3}}}{(n)^{\frac{4}{3}}}+\frac{(n+2)^{\frac{1}{3}}}{(n)^{\frac{4}{3}}}+............+\frac{(2n)^{\frac{1}{3}}}{(n)^{\frac{4}{3}}})

=> \lim_{n\rightarrow \infty }\frac{1}{n}[(1+\frac{1}{n})^{\frac{1}{3}}+(1+\frac{2}{n})^{\frac{1}{3}}+..........+(1+\frac{n}{n})^{\frac{1}{3}}]

=> \frac{1}{n}\sum_{n=1}^{n}(1+\frac{r}{n})^{\frac{1}{3}}

=> \int_{0}^{1}(1+x)^{\frac{1}{3}}dx=\frac{3}{4}(2^{\frac{4}{3}}-1)

option (1) is correct.


Option 1)

\frac{3}{4}(2)^{\frac{4}{3}}-\frac{3}{4}

Option 2)

\frac{4}{3}(2)^{\frac{4}{3}}

Option 3)

\frac{3}{4}(2)^{\frac{4}{3}}-\frac{4}{3}

Option 4)

\frac{4}{3}(2)^{\frac{3}{4}}

Preparation Products

Knockout JEE Main April 2021

An exhaustive E-learning program for the complete preparation of JEE Main..

₹ 22999/- ₹ 14999/-
Buy Now
Knockout JEE Main April 2022

An exhaustive E-learning program for the complete preparation of JEE Main..

₹ 34999/- ₹ 24999/-
Buy Now
Test Series JEE Main Sept 2020

Take chapter-wise, subject-wise and Complete syllabus mock tests and get in depth analysis of your test..

₹ 4999/- ₹ 1999/-
Buy Now
Knockout JEE Main Sept 2020

An exhaustive E-learning program for the complete preparation of JEE Main..

₹ 12999/- ₹ 6999/-
Buy Now
Rank Booster JEE Main 2020

This course will help student to be better prepared and study in the right direction for JEE Main..

₹ 9999/- ₹ 4999/-
Buy Now
Exams
Articles
Questions