The solution of the differential equation x\frac{d^{2}y}{dx^{2}}=1, given that y=1, \: \: \frac{dy}{dx}=0, \: when \: x=1, is

  • Option 1)

    y=x\log x+x+2

  • Option 2)

    y=x\log x-x+2

  • Option 3)

    y=x\log x+x

  • Option 4)

    y=x\log x-x


Answers (1)


Solution of Differential Equation -

\frac{\mathrm{d}y }{\mathrm{d} x} =f\left ( ax+by+c \right )


 Z =ax+by+c



- wherein

Equation with convert to

\int \frac{dz}{bf\left ( z \right )+a} =x+c




 x\frac{d^{2}y}{dx^{2}}=1\\ \frac{d^{2}y}{dx^{2}}=\frac{1}{x}\\

Integrating both sides

 \frac{dy}{dx}=logx+c\\ \\0=log1+c\Rightarrow\ c=0\\ \therefore \frac{dy}{dx}=logx\\ \int dy=\int logxdx\\ y=xlogx-x+c\\ 1=1.log1-1+c=c-1\\ c=2\\ \therefore y=xlogx-x+2

Option 1)

y=x\log x+x+2

This option is incorrect 

Option 2)

y=x\log x-x+2

This option is correct 

Option 3)

y=x\log x+x

This option is incorrect 

Option 4)

y=x\log x-x

This option is incorrect 

Preparation Products

Knockout BITSAT 2021

It is an exhaustive preparation module made exclusively for cracking BITSAT..

₹ 4999/- ₹ 2999/-
Buy Now
Knockout BITSAT-JEE Main 2021

An exhaustive E-learning program for the complete preparation of JEE Main and Bitsat.

₹ 27999/- ₹ 16999/-
Buy Now