Get Answers to all your Questions

header-bg qa

A particle executes simple harmonic motion (amplitude = A) between x = -A and x = +A . The time taken for it to go 0 to \frac{A}{2} is T_{1} and to go from \frac{A}{2}  to A is T_{2}. Then 

  • Option 1)

    T_{1} < T_{2}

  • Option 2)

    T_{1} > T_{2}

  • Option 3)

    T_{1} = T_{2}

  • Option 4)

    T_{1} =2T_{2}

 

Answers (1)

best_answer

Using x = A\sin\omega t

For x = \frac{A}{2}\sin\omega T_{1} = \frac{1}{2} \Rightarrow T_{1} = \frac{\pi}{6\omega}

For x = A,  \sin\omega (T_{1}+T_{2}) =1 \Rightarrow T_{1}+T_{2} = \frac{\pi}{2\omega}

\Rightarrow T_{2} = \frac{\pi}{2\omega} - T_{1} = \frac{\pi}{2\omega} - \frac{\pi}{6\omega} = \frac{\pi}{3\omega}

i.e   T_{1} < T_{2}

 

Time Period -

Since all periodic motion repeat themselves in equal time interval. This minimum time interval is known as time period for oscillation.

- wherein

It is denoted by T.

 

 

 


Option 1)

T_{1} < T_{2}

This is correct.

Option 2)

T_{1} > T_{2}

This is incorrect.

Option 3)

T_{1} = T_{2}

This is incorrect.

Option 4)

T_{1} =2T_{2}

This is incorrect.

Posted by

Plabita

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE