Get Answers to all your Questions

header-bg qa

Consider a circle with its centre lying on the focus of the parabola  \mathrm {y^2=2 p x}  such that it touches the directrix of the parabola. Then the points of intersection of the circle and parabola are
 

Option: 1

\mathrm {\left(\frac{p}{2}, p\right),\left(\frac{p}{2},-p\right)}


Option: 2

\mathrm {\left(\frac{p}{2},-\frac{p}{2}\right),\left(\frac{-p}{2}, p\right)}


Option: 3

\mathrm {\left(-\frac{p}{2}, p\right),\left(p, \frac{-p}{2}\right)}


Option: 4

\mathrm {\left(-\frac{p}{2},-\frac{p}{2}\right),\left(\frac{-p}{2}, \frac{p}{2}\right)}


Answers (1)

best_answer

The focus of parabola   \mathrm {y^2=2 p x }  is   \mathrm {\left(\frac{p}{2}, 0\right) }  and directrix  \mathrm {x=-p / 2 }

\therefore Centre of circle is \mathrm {\\ \left(\frac{p}{2}, 0\right) }  and radius  \mathrm {\frac{p}{2}+\frac{p}{2}=p\\ } 

\therefore  Equation of circle is  \mathrm {\left(x-\frac{p}{2}\right)^2+y^2=p^2} 
For points of intersection with   \mathrm {y^2=2 p x} ........(1)

and  \mathrm {4 x^2+4 y^2-4 p x-3 p^2=0} ...........(2)

Can be obtained by solving (1) and (2) as follows

\begin{aligned} & \mathrm {\Rightarrow 4 x^2+8 p x-4 p x-3 p^2=0 \Rightarrow 4 x^2+4 p x-3 p^2=0 }\\ & \mathrm {\Rightarrow \quad(2 x+3 p)(2 x-p)=0 \Rightarrow x=\frac{-3 p}{2}, \frac{p}{2} }\\ & \mathrm {\Rightarrow y^2=-3 p^2 \text { (not possible), } p^2 \Rightarrow y= \pm p }\\ \end{aligned}
\therefore  Required points are \mathrm {(p / 2, p),(p / 2,-p)} 

Posted by

qnaprep

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE