Get Answers to all your Questions

header-bg qa

Consider the following statements:

(A)  The principle quantum number 'n' is a positive integer with values of \mathrm'{n}^{\prime}=1,2,3, \ldots

(B)  The azimuthal quantum number 'l' for a given 'n' ( principal quantum number) can have  values as \mathrm{' l^{\prime}=0,1,2, \ldots . \mathrm{n}}

(C)  Magnetic orbital quantum number 'm' for a particular 'l' ( azimuthal quantum number) has \mathrm{(2 l+1)} value.

(D)  \mathrm{\pm 1 / 2} are the two possible orientations of electron spin.

(E) \mathrm{\text { For } l=5,} there will be a total of 9 orbital

Which of the above statement are correct ?

Option: 1

\mathrm{(A),(B) \text { and }(C)}


Option: 2

\mathrm{(\mathrm{A}),(\mathrm{C}),(\mathrm{D}) \text { and }(\mathrm{E})}


Option: 3

\mathrm{(\mathrm{A}),(\mathrm{C}) \text { and }(\mathrm{D})}


Option: 4

\mathrm{(A),(B),(C) \text { and }(D)}


Answers (1)

best_answer

- Statement (A) is Correct as ' n ' is a positive integer with values of  \text{' n '} =1,2,3 \ldots \ldots

- Statement (B) is incorrect as '\ell' Can have values from \mathrm{0 ~to ~(n-1)}

- Statement (C) is Correct as m can take values from \mathrm{-\ell\; to\; +\ell }

  \therefore Total values is  \mathrm{2\ell+1}

Statement (D) is correct as spin value \mathrm{=\pm \frac{1}{2}}

Statement (E) is incorrect as for \mathrm{l=5 \text {, no. of orbitals }=2 l+1=11}

Hence, Option (3) is correct.

Posted by

HARSH KANKARIA

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE