Get Answers to all your Questions

header-bg qa

Consider the following statements :

S_{1}:x=\sqrt{log_{11}7} and y=\sqrt{log_{7}11} , then e^{y\ln7-x\ln7}  is equal to 1 .

S_{2}: \log_{x}3>\log_{x}2 is true for all value of  x\epsilon (0,1)\cup (1,\infty )

S_{3}:\left | x-2 \right |=[-\pi] , then x is 6,-2

S_{4}:\log_{25}(2+\tan^{2}\theta)=0.5 , then \theta may be \frac{4\pi }{3}\:\:or\:\:\frac{2\pi }{3}

 

State, in order, whether S_{1}, S_{2}, S_{3}, S_{4}  are true or false

Option: 1

T\:F\:F\:T


Option: 2

F\:F\:T\:T


Option: 3

F\:T\:F\:T


Option: 4

T\:T\:F\:T


Answers (1)

best_answer

 

Greatest Integer Function -

\left [ x \right ]= Greatest integer less than or equal to x

\left ( for\: x\: \in\: R \right )

- wherein

Range = Integers

 

 

 

S_{1}:e^{y\:ln7-x\:ln11}=e^{ln\frac{7^{y}}{11^{x}}}=\frac{7^{y}}{11^{x}}=\frac{7^{\sqrt{log_{7}11}}}{11^{\sqrt{log_{11}7}}}

=\frac{7^{\frac{log_{7}11}{\sqrt{log_{7}11}}}}{11^{\sqrt{log_{11}7}}}=\frac{11^{\sqrt{log_{11}7}}}{11^{\sqrt{log_{11}7}}}=1

S_{2}:log_{x}3>log_{x}2\Rightarrow \:\:\:\:x>1

S_{3}:\left | x-2 \right |=[-\pi]

          \left | x-2 \right |=-4\:\:\:no\:\:solution

S_{4}:log_{25}(2+\tan^{2}\theta)=\frac{1}{2}\Rightarrow 2+\tan^{2}\theta=5

       \Rightarrow log_{5}(2+\tan^{2}\theta)=\frac{1}{2}\Rightarrow 2+\tan^{2}\theta=5

       \Rightarrow \tan^{2}\theta=3\Rightarrow \tan\theta=\pm \sqrt{3}\\\\\\

      \Rightarrow \theta\:may\:take\:value\:\frac{2\pi}{3}\:or\:\frac{4\pi}{3}

 

Posted by

Devendra Khairwa

View full answer