Get Answers to all your Questions

header-bg qa

Consider the reaction: 2 \mathrm{X} \rightarrow 4 \mathrm{Y}+\mathrm{Z}
In the reaction Y is being formed at the rate of 0.05 \mathrm{molL}^{-1} \mathrm{~s}^{-1}.

Calculate overall rate of reaction.

Option: 1

0.0125 \mathrm{molL}^{-1} \mathrm{~s}^{-1}


Option: 2

0.1 \mathrm{molL}^{-1} \mathrm{~s}^{-1}


Option: 3

0.05 \mathrm{molL}^{-1} \mathrm{~s}^{-1}


Option: 4

0.025 \mathrm{molL}^{-1} \mathrm{~s}^{-1}


Answers (1)

best_answer

For a given reaction, if: \mathrm{a A+b B \rightarrow c C+d D}
Overall rate r can be expressed as:
\mathrm{ r=\frac{-1}{a} \times \frac{d[A]}{d t}=\frac{-1}{b} \times \frac{d[B]}{d t}=\frac{+1}{c} \times \frac{d[C]}{d t}=\frac{+1 d[D]}{d d t}}
where:
\mathrm{-\frac{d[A]}{d t}= } Rate of disappearance of A

\mathrm{\mathrm{-\frac{d[B]}{d t}=}} Rate of disappearance of B

\mathrm{+\frac{d[C]}{d t}= } Rate of disappearance of C

\mathrm{+\frac{d[D]}{d t}= } Rate of disappearance of D
Given:
\mathrm{2 X \rightarrow 4 Y+Z}
\mathrm{+\frac{d[Y]}{d t}=} Rate of formation of \mathrm{ = 0.05 \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~s}^{-1}}
Overall rate \mathrm{(r)=\frac{1}{4} \times \mathrm{Ratio} {~of} {~formation} {~of} ~Y}
\mathrm{r=\frac{1}{4} \times 0.05=0.0125 \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~s}^{-1}}

Posted by

Ajit Kumar Dubey

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE