Get Answers to all your Questions

header-bg qa

Different combination of 3 resistors of equal resistance R are shown in the figures. The increasing order for power dissipation is:

Option: 1

\mathrm{P}_{\mathrm{C}}<\mathrm{P}_{\mathrm{B}}<\mathrm{P}_{\mathrm{A}}<\mathrm{P}_{\mathrm{D}}


Option: 2

\mathrm{P}_{\mathrm{C}}<\mathrm{P}_{\mathrm{D}}<\mathrm{P}_{\mathrm{A}}<\mathrm{P}_{\mathrm{B}}


Option: 3

\mathrm{P}_{\mathrm{B}}<\mathrm{P}_{\mathrm{C}}<\mathrm{P}_{\mathrm{D}}<\mathrm{P}_{\mathrm{A}}


Option: 4

\mathrm{P}_{\mathrm{A}}<\mathrm{P}_{\mathrm{B}}<\mathrm{P}_{\mathrm{C}}<\mathrm{P}_{\mathrm{D}}


Answers (1)

best_answer

\text { Power dissipation, } \mathrm{P}=\mathrm{I}^2 \mathrm{R}

\\\text{(A) R}_{\mathrm{eq}}=\frac{R}{2}+R=\frac{3 R}{2}\\ \\\text{(B) R}_{e q}=\frac{(2 R)(R)}{2 R+R}=\frac{2 R}{3}

\\\text{(C) R}_{\mathrm{eq}}=\frac{R}{3}\\ \\\text{(D) R}_{\text {eq }}=3 R

\mathrm{R}_D>\mathrm{R}_A>R_B>R_C

Since, P \propto R_{\text {eq }}

\mathrm{P}_{\mathrm{D}}>\mathrm{P}_{\mathrm{A}}>\mathrm{P}_{\mathrm{B}}>\mathrm{P}_{\mathrm{C}}

Posted by

vishal kumar

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE