Get Answers to all your Questions

header-bg qa

Evaluate,

\mathrm{\lim _{x \rightarrow 1}\left(\frac{1}{x-1}-\frac{3}{1-x^3}\right)}

Option: 1

0


Option: 2

1


Option: 3

5


Option: 4

dose not exist


Answers (1)

best_answer

Using the identity \mathrm{A-B=\frac{1}{\frac{1}{A}}-\frac{1}{\frac{1}{B}}}  we get 
                        \mathrm{\frac{1}{x-1}-\frac{3}{1-x^3}=\frac{2-x^3-x}{-x^4+x^3+x-1}}
so you go from the from \mathrm{\infty-\infty} to the from \frac{0}{0} and you can L ' Hospital so you have 
                        \mathrm{\lim _{x \rightarrow 1} \frac{1}{x-1}-\frac{3}{1-x^3}=\lim \frac{-3 x^2-1}{-4 x^3+3 x^2+1}}
and you can verify that the limits to the right and to the lift are not equal, the first is \mathrm{-\infty} and the secondis \mathrm{\infty}.
Thus the limit does not exist

Posted by

HARSH KANKARIA

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE