Get Answers to all your Questions

header-bg qa

Evaluate    \quad \lim _{x \rightarrow 0} \frac{x \cdot \ln (1+x)}{e^{2 x}-1}

Option: 1

0


Option: 2

1


Option: 3

2


Option: 4

3


Answers (1)

best_answer

Using L-hospital

\lim _{x \rightarrow 0} \frac{x \cdot \ln (1+x)}{e^{2 x}-1}

Now as ! approaches to 0 it is in \frac{0}{0} so just apply L'Hospital's rule differentiating numerator and denominator we get

\lim _{x \rightarrow 0} \frac{\ln (1+x)+\frac{x}{1+x}}{e^{2 x} \times 2}

Which is  0 / 1=0

Posted by

Irshad Anwar

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE