Get Answers to all your Questions

header-bg qa

Find numerically the greatest term in the expansion of (3-5 x)^{11} when x=\frac{1}{5}.

Option: 1

44 \times 3^{8}


Option: 2

55 \times 3^{9}


Option: 3

55 \times 3^{10}


Option: 4

44\times 3^{10}


Answers (1)

best_answer

Since (3-5 x)^{11}=3^{11}\left(1-\frac{5 x}{3}\right)^{11}

Now in the expansion of \left(1-\frac{5 x}{3}\right)^{11}, we have

\frac{T_{r+1}}{T_{r}}=\frac{(11-r+1)}{r}\left|-\frac{5 x}{3}\right|

 =\left(\frac{12-r}{r}\right)\left|-\frac{5}{3} \times \frac{1}{5}\right|    \because (x=\frac{1}{5}) \\

=\left(\frac{12-r}{r}\right)\left(\frac{1}{3}\right)\\

 =\left(\frac{12-r}{3 r}\right) \\

 \therefore \quad \frac{T_{r+1}}{T_{r}} \geq 1 \Rightarrow \frac{12-r}{3 r} \geq 1 \\

 \Rightarrow \quad 4 r \leq 12 \\

\Rightarrow \quad r \leq 3 \therefore r=2,3

so, the greatest terms are \mathrm{T}_{2+1} and \mathrm{T}_{3+1}.

\therefore Greatest terms (where  r=2)=3^{11}\left|T_{2+1}\right|

= 3^{11}\left|{ }^{11} C_{2}\left(-\frac{5}{3} x\right)^{2}\right| \\

= 3^{11}\left|{ }^{11} C_{2}\left(-\frac{5}{3} \times \frac{1}{5}\right)^{2}\right| \quad\left( x=\frac{1}{5}\right) \\

= 3^{11}\left|\frac{11.10}{1.2} \times \frac{1}{9}\right|=55 \times 3^{9}

and greatest term (where r=3)=3^{11}\left|T_{3+1}\right|

= 3^{11}\left|{ }^{11} C_{3}\left(-\frac{5}{3} x\right)^{3}\right| \\

= 3^{11}\left|{ }^{11} C_{3}\left(-\frac{5}{3} \times \frac{1}{5}\right)^{3}\right| \\

= 3^{11}\left|\frac{11.10 .9}{1.2 .3} \times \frac{-1}{27}\right|=55 \times 3^{9}

From above we say that the values of both greatest terms are equal.

Alternative Method (Short Cut Method) :

Since (3-5 x)^{11}=3^{11}\left(1-\frac{5 x}{3}\right)^{11}=3^{11}\left(1-\frac{1}{3}\right)^{11} \quad\left( x=\frac{1}{5}\right)

Now, calculate m=\frac{|x|(n+1)}{(|x|+1)} \quad\left(-\frac{1}{3}<0\right)

=\frac{\left(\left|-\frac{1}{3}\right|\right)(11+1)}{\left(\left|-\frac{1}{3}\right|+1\right)} \\

 =3

\therefore The greatest terms in the expansion are \mathrm{T}_{3}\,\, and\,\, \mathrm{T}_{4}

\therefore  Greatest term (when r=2)=3^{11}\left|T_{2+1}\right|

=3^{11}\left|{ }^{11} C_{2}\left(-\frac{1}{3}\right)^{2}\right|=3^{11}\left|\frac{11.10}{1.2} \times \frac{1}{9}\right|=55 \times 3^{9}

and greatest term (when r=3)=3^{11}\left|T_{3+1}\right|

= 3^{11}\left|{ }^{11} C_{3}\left(-\frac{1}{3}\right)^{3}\right| \\

= 3^{11}\left|\frac{11.10 \times 9}{1.2 .3} \times \frac{-1}{27}\right|=55 \times 3^{9}

From above we say that the values of both greatest terms are equal.

Posted by

Riya

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE