Get Answers to all your Questions

header-bg qa

Find the locus of points of intersection of tangents drawn at the ends of all normal chords to the parabola \mathrm{y^2=8(x-1)}
 

Option: 1

\mathrm{y^2(x+6)+32-0}
 


Option: 2

\mathrm{y^2 x+32=0}
 


Option: 3

\mathrm{y^2(x+3)+32=0}
 


Option: 4

\mathrm{y^2(x+5)+32=0}


Answers (1)

best_answer

Consider the parabola \mathrm{y^2=4 a x} Let \mathrm{P Q}  be any normal chord whose equation is
\mathrm{y=m x-2 a m-a m^3}      ......(1)
If the tangents at \mathrm{P} and intersect at \mathrm{(h, k)} then \mathrm{PQ}is chord of contact whose equation is
\mathrm{k y=2 a(x+h)}      ...(2)
Comparing (1) and (2) we get
\mathrm{ \frac{k}{1}=\frac{2 a}{m}=\frac{2 a h}{-a\left(2 m+m^3\right)} }
\mathrm{\therefore \quad m=\frac{2 a}{k}\: and \: k\left(2 m+m^3\right)=-2 h}
Putting for \mathrm{m \: we \: get\: k\left(\frac{4 a}{k}+\frac{8 a^3}{k^3}\right)=-2 h}
\mathrm{or \: 2 a+\frac{4 a^3}{k^2}=-h}
\mathrm{\therefore k^2(h+2 a)+4 a^3=0}
Hence the required locus is \mathrm{y^2(x+2 a)+4 a^3=0}

Here parabola is \mathrm{y^2=8(x-1)}

\mathrm{\therefore a=2 \: \: and\, \, replace\: \: x \: \: by\: \: x-1}

Hence the locus is \mathrm{y^2(x-1+2.2)+4 .(2)^3}

\mathrm{or \: y^2(x+3)+32=0}

Posted by

Pankaj

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE