Get Answers to all your Questions

header-bg qa

Find the locus of the middle points of the chords of contact of orthogonal tangents to the parabola \mathrm{y^2=4 a x.}

Option: 1

\mathrm{y^2=a(x+a)}


Option: 2

\mathrm{y^2=2 a(x-a)}


Option: 3

\mathrm{y^2=2 a(x+a)}


Option: 4

\mathrm{y^2=a(x-a)}


Answers (1)

best_answer

The equation of the chord of contact of tangents from \mathrm{(h, k)} is

\mathrm{ \mathrm{yk}=2 \mathrm{a}(\mathrm{x}+\mathrm{h}) }       ......(1)

and the equation of chord of parabola whose middle point is \mathrm{(\alpha, \beta)} is

\mathrm{ y \beta-2 a(x+\alpha)=\beta^2-4 a \alpha }      ......(2)

Since (1) and (2) are same

\mathrm{ \frac{k}{\beta}=\frac{2 a}{2 a}=\frac{2 a h}{2 a \alpha+\beta^2-4 a \alpha} }

\mathrm{\Rightarrow \mathrm{k}=\beta} and \mathrm{\frac{2 \mathrm{ah}}{\beta^2-2 \mathrm{a} \alpha}=1 \Rightarrow \mathrm{h}=\frac{\beta^2-2 \mathrm{a} \alpha}{2 \mathrm{a}} \, \, and \, \, \mathrm{k}=\beta}
Since the tangents from $(h, k)$ are at right angles, the point $(h, k)$ lies on the directrix

\mathrm{ \begin{aligned} & x+a=0 \\ & \Rightarrow h+a=0 \Rightarrow \frac{\beta^2-2 a \alpha}{2 a}+a=0 \\ & \Rightarrow \beta^2-2 a \alpha+2 a^2=0 \Rightarrow \beta^2=2 a(\alpha-a) \end{aligned} }

Hence locus of \mathrm{(\alpha, \beta)} is

\mathrm{ y^2=2 a(x-a) . }

Posted by

HARSH KANKARIA

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE