Get Answers to all your Questions

header-bg qa

For a triangle OAB where O is (0, 0), A is (1, –1), and B is (2, –3) the circle \mathrm{x^2+y^2+4 x+6 y-5=0} 0 has orthocentre of \mathrm{\Delta OAB} as

Option: 1

an interior point
 


Option: 2

exterior point
 


Option: 3

a point on the circumference of the circle
 


Option: 4

none of these


Answers (1)

best_answer

Let     \mathrm{S(x, y)=x^2+y^2+4 x+6 y-5} 

Then \mathrm{S(0,0)=-5<0 \Rightarrow O\: is\: inside\: the\: circle

        \mathrm{S(1,-1)=-5<0 \Rightarrow A\; is\; inside\; the\; circle}

 As all the three points O, A, and B lie inside the triangle, the orthocentre of the triangle also lies inside the circle.

Posted by

Ritika Kankaria

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE