Get Answers to all your Questions

header-bg qa

For any real number \mathrm{x}, let \mathrm{[x]} denote the largest integer less than equal to \mathrm{x}. Let \mathrm{f} be a real valued function defined on the interval \mathrm{[-10,10]}  by  \mathrm{f(x)=\left\{\begin{array}{l} x-[x], \text { if }[x] \text { is odd } \\ 1+[x]-x, \text { if }[x] \text { is even } \end{array}\right.}.

Then the value of  \mathrm{\frac{\pi^{2}}{10} \int_{-10}^{10} f(x) \cos \pi x d x} is :

Option: 1

4


Option: 2

2


Option: 3

1


Option: 4

0


Answers (1)

best_answer

\mathrm{f(x)} is periodic function where period is \mathrm{2}

\mathrm{\frac{\pi^{2}}{10} \int_{-10}^{10} f(x) \cos \pi x d x=\frac{\pi^{2}}{10} \times 10 \int_{0}^{2} f(x) \cos \pi x d x} \\

\mathrm{=\pi^{2}\left(\int_{0}^{1}(1-x) \cos \pi x d x+\int_{1}^{2}(x-1) \cos \pi x d x\right) }\\

\text { using by parts } \\

\mathrm{=\pi^{2} \times \frac{4}{\pi^{2}}=4}

Hence correct option is 1

Posted by

shivangi.bhatnagar

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE