Get Answers to all your Questions

header-bg qa

For the following reaction:
xA  \rightarrow yB
\mathrm{ \log _{10}\left[-\frac{d[A]}{d t}\right]=\log _{10}\left[\frac{d[B]}{d t}\right]+\log _{10}(3)}
Here x, y are the stoichiometric coefficients of reactant A and product B respectively.
Negative sign indicates rate of disappearance of the reactant.
Calculate the value of x : y.

Option: 1

3:1


Option: 2

1:3


Option: 3

1:1


Option: 4

2:1


Answers (1)

best_answer

\mathrm{ \log _{10}\left[-\frac{d[A]}{d t}\right]=\log _{10}\left[\frac{d[B]}{d t}\right]+\log _{10}(3) \\ }

\mathrm{ \log _{10}\left[-\frac{d[A]}{d t}\right]=\log _{10}\left[\frac{3 d[B]}{d t}\right] \\ }

\mathrm{ \Rightarrow-\frac{d[A]}{d t}=3 \times \frac{d[B]}{d t} }

For a given reaction, if: aA + bB \rightarrow cC + dD

Overall rate r can be expressed as:
\mathrm{ r=\frac{-1}{a} \times \frac{d[A]}{d t}=\frac{-1}{b} \times \frac{d[B]}{d t}=\frac{+1}{c} \times \frac{d[C]}{d t}=\frac{+1 d[D]}{d d t} }

Comparing eqn (i) with above:
\mathrm{ x: y=1: \frac{1}{3} }

\mathrm{ x: y=3: 1 }

Posted by

Rishi

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE