For the limit of the function , where indicates the fractional part function, which of the following is true?
LHL exists but RHL does not exist
RHL exists but LHL does not exist
Neither LHL nor RHL does exist
Both RHL and LHL exist and equals to
Note that the following essential points.
The Right Hand Limit (RHL) of the function at is .
The Left Hand Limit (LHL) of the function at is .
Here, h is positive and infinitely small.
The limit exists only when
For the real number that can be an integer or a fraction or a decimal, is used to indicate the greatest integer function and is used to indicate the fractional or the decimal part of . Thus, mathematically, .
The following is deduced which is used in the further calculations.
The Left Hand limit of
The Right Hand limit of
Thus, the RHL of exists but its LHL does not exist.
Study 40% syllabus and score up to 100% marks in JEE