Get Answers to all your Questions

header-bg qa

For the reaction, 2N_{2}O_{5}\rightarrow 4NO_{2}+O_{2},, the rate equation can be expressed in two ways -\frac{d\left [ N_{2}O_{5} \right ]}{dt}=k\left [ N_{2}O_{5} \right ]  and +\frac{d\left [ NO_{2} \right ]}{dt}=k'\left [ N_{2}O_{5} \right ]  

k\, and \, k'  are related as :

Option: 1

k=k'


Option: 2

2k=k'


Option: 3

k=2k'


Option: 4

k=4k'


Answers (1)

best_answer

As we discussed in the concept

Instantaneous Rate -

The rate of a reaction calculated at a particular instant of time is called Instantaneous Rate

 

- wherein

r_{av}=\frac{-\Delta R}{\Delta t}=\frac{+\Delta P}{\Delta t}

\lim_{\Delta\rightarrow 0}r_{av} = r_{inst}

Formula = \frac{-d[R]}{dt}= \frac{-d[P]}{dt}

 

 2N_{2}O_{5}\rightarrow 4NO_{2}+O_{2}

given that

\frac{-d\left [ N_{2}O_{5} \right ]}{dt}=k\left [ N_{2} O_{5}\right ]

+\frac{d\left [ NO_{2} \right ]}{dt}=k^{1}\left [ N_{2}O _{5}\right ]

\frac{d\left [ N_{2}O_{5} \right ]}{dt}=\frac{d\left [ NO_{2} \right ]}{2dt}

k\left [ N_{2} O_{5}\right ]=\frac{k^{1}\left [ N_{2}O_{5} \right ]}{2}

2k=k^{1}

Therefore, option (2) is correct.

Posted by

vishal kumar

View full answer