Get Answers to all your Questions

header-bg qa

From a point A common tangents are drawn to the circle x^2+y^2=\frac{a^2}{2} and parabola y^2=4 a x . Find the area of the quadrilateral formed by the common tangents, the chord of contact of the circle and the chord of contact of the parabola.

 

Option: 1

\begin{aligned} & \frac{25 a^3}{4} \\ \end{aligned}


Option: 2

\frac{5 a}{7} \\


Option: 3

\frac{15 a^2}{4} \\


Option: 4

-\frac{13 a^2}{9}


Answers (1)

best_answer

Equation of any tangent to the parabola, y^2=4 a x \text { is } y=m x+\frac{a}{m} \text {. } .

This line will touch the circle  x^2+y^2=\frac{a^2}{2} .

\begin{aligned} & \text { If, }\left(\frac{a}{m}\right)^2=\frac{a^2}{2}\left(m^2+1\right) \\ & \Rightarrow \frac{1}{m^2}=\frac{1}{2}\left(m^2+1\right) \\ & \Rightarrow 2=m^4+m^2 \\ & \Rightarrow m^4+m^2-2=0 \\ & \Rightarrow\left(m^2-1\right)\left(m^2+2\right)=0 \\ & \Rightarrow m^2-1=0, m^2=-2 \\ & \Rightarrow m= \pm 1 \end{aligned}

Therefore, two common tangents are y=x+a \text { and } y=-x-a \text {. }

These two intersect at  A(-a ,0 ).

The chord of contact of A (a ,-0 ) for the circle x^2+y^2=\frac{a^2}{2}

\Rightarrow x=-\frac{a}{2}

and chord of contact of A(a , -0) for the parabola y^2=4 a x \text { is } 0

\begin{aligned} y & =2 a(x-a) \\ \Rightarrow x & =a \end{aligned}

Again, length of BC =

\begin{aligned} & \quad=2 B K \\ & =2 \sqrt{O B^2-O K^2} \\ & =2 \sqrt{\frac{a^2}{2}-\frac{a^2}{4}}=2 \sqrt{\frac{a^2}{4}}=a \end{aligned}

and we know that, DE is the latus rectum of the parabola, so its length is 4a. 

Thus, area of the quadrilateral BCDE  = 

\begin{array}{r} =\frac{1}{2}(B C+D E)(K L) \\ \end{array}

=\frac{1}{2}(a+4 a)\left(\frac{3 a}{2}\right)=\frac{15 a^2}{4}

Posted by

admin

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE