Consider an ellipse, whose centre is at the origin and its major axis is along the
x-axis.  If its eccentricity is \small \frac{3}{5}  and the distance between its foci is 6, then the area (in sq. units) of the quadrilateral inscribed in the ellipse, with the vertices as the vertices of the ellipse, is :

 

  • Option 1)

    8

  • Option 2)

    32

  • Option 3)

    80

  • Option 4)

    40

 

Answers (2)

As we learnt in 

Length of major axis -

2a

- wherein

a\rightarrow Semi major axis

 

 

Length of major axis -

2b

- wherein

b\rightarrow Semi minor axis

 

 

Eccentricity -

e= \sqrt{1-\frac{b^{2}}{a^{2}}}

- wherein

For the ellipse  

\frac{x^{2}}{a^{2}}+ \frac {y^{2}}{b^{2}}= 1

 e=\frac{3}{5}

2ae=6\; \Rightarrow ae=3

Hence a=5

b^{2}=a^{2}(1-e^{2})=>b=4

Area of quadrilateral ABCD = 4 ar \Delta AOB

=4\times \frac{1}{2}\times a\times b

=4\times \frac{1}{2}\times 5\times 4

=4 \times 10 = 40


Option 1)

8

This option is incorrect

Option 2)

32

This option is incorrect

Option 3)

80

This option is incorrect

Option 4)

40

This option is correct

N neha

Preparation Products

JEE Main Rank Booster 2021

This course will help student to be better prepared and study in the right direction for JEE Main..

₹ 13999/- ₹ 9999/-
Buy Now
Knockout JEE Main April 2021 (Subscription)

An exhaustive E-learning program for the complete preparation of JEE Main..

₹ 4999/-
Buy Now
Knockout JEE Main April 2021

An exhaustive E-learning program for the complete preparation of JEE Main..

₹ 22999/- ₹ 14999/-
Buy Now
Knockout JEE Main April 2022

An exhaustive E-learning program for the complete preparation of JEE Main..

₹ 34999/- ₹ 24999/-
Buy Now
Knockout JEE Main January 2022

An exhaustive E-learning program for the complete preparation of JEE Main..

₹ 34999/- ₹ 24999/-
Buy Now
Exams
Articles
Questions