\int \frac{\log_{e}x}{x\sqrt{1+\log_{e}x}}.dx=

  • Option 1)

    (1+\log_{e}x)^{\frac{3}{2}}+c

  • Option 2)

    \frac{2}{3}(1+\log_{e}x)(\log_{e}x-2)+c

  • Option 3)

    \frac{2}{3}(1+l_nx)^{\frac{1}{2}}(l_nx-5)+c

  • Option 4)

    \frac{2}{3}(1+l_nx)^{\frac{1}{2}}(l_nx-2)+c

 

Answers (1)

As learnt

Type of integration by substitution -

\int \frac{f'(x)dx}{\sqrt{f(x)}}=2\sqrt{f(x)}+c

- wherein

Let f(x)=t 

\therefore f{}'(x)dx=dt

 

 

\int \frac{\log_{e}x}{\sqrt[x]{1+ \log_{e}x}} \: dx , Let \\ 1+\log_{e}x=t \\ \log_{e}x=t-1 \: \: , \: \: \frac{1}{x}dx=dt

\int \frac{-1+t dt}{\sqrt{t}} \: \: = \: \int \frac{t}{\sqrt{t}}dt-\int \frac{1}{\sqrt{t}}dt

                     \\ = \int \sqrt{t}dt-\int \frac{dt}{\sqrt{t}} \\ \\ \Rightarrow \frac{2}{3}\left ( 1+\log_{e}x \right )^{\frac{3}{2}}-2(1+\log_{e}x)^{\frac{1}{2}}

                    =2(\log_{e}x+1)^{\frac{1}{2}}\left [ \frac{(1+\log_{e}x)}{3}-1 \right ]

                    =\frac{2}{3}\left ( 1+\log_{e}x \right )^{\frac{1}{2}}(\log_{e}x-2)+c


Option 1)

(1+\log_{e}x)^{\frac{3}{2}}+c

This option is incorrect

Option 2)

\frac{2}{3}(1+\log_{e}x)(\log_{e}x-2)+c

This option is incorrect

Option 3)

\frac{2}{3}(1+l_nx)^{\frac{1}{2}}(l_nx-5)+c

This option is incorrect

Option 4)

\frac{2}{3}(1+l_nx)^{\frac{1}{2}}(l_nx-2)+c

This option is correct

Preparation Products

Knockout BITSAT 2021

It is an exhaustive preparation module made exclusively for cracking BITSAT..

₹ 4999/- ₹ 2999/-
Buy Now
Knockout BITSAT-JEE Main 2021

An exhaustive E-learning program for the complete preparation of JEE Main and Bitsat.

₹ 27999/- ₹ 16999/-
Buy Now
Exams
Articles
Questions