Get Answers to all your Questions

header-bg qa

The set of all values of \lambda for which the system of linear equations :

2x_{1}-2x_{2}+x_{3}=\lambda x_{1}

2x_{1}-3x_{2}+2x_{3}=\lambda x_{2}

-x_{1}+2x_{2}\; \; \; =\lambda x_{3}

has a non-trivial solution,

  • Option 1)

    is an empty set.

  • Option 2)

    is a singleton.

  • Option 3)

    contains two elements.

  • Option 4)

    contains more than two elements.

 

Answers (2)

As we learnt in 

Cramer's rule for solving system of linear equations -

When \Delta =0  and \Delta _{1}=\Delta _{2}=\Delta _{3}=0 ,

then  the system of equations has infinite solutions.

- wherein

a_{1}x+b_{1}y+c_{1}z=d_{1}

a_{2}x+b_{2}y+c_{2}z=d_{2}

a_{3}x+b_{3}y+c_{3}z=d_{3}

and 

\Delta =\begin{vmatrix} a_{1} &b_{1} &c_{1} \\ a_{2} & b_{2} &c_{2} \\ a_{3}&b _{3} & c_{3} \end{vmatrix}

\Delta _{1},\Delta _{2},\Delta _{3} are obtained by replacing column 1,2,3 of \Delta by \left ( d_{1},d_{2},d_{3} \right )  column

 

\begin{vmatrix} 2-\lambda & -2 & 1\\ 2 & -3-\lambda & 2\\ -1 & 2 & -\lambda \end{vmatrix}=0

\therefore \left ( 2-\lambda \right )\left ( \lambda ^{2}+3\lambda -4 \right )+4\left ( 1-\lambda \right )+\left ( 1-\lambda \right )=0

\therefore \left ( \lambda -1 \right )\left ( \lambda ^{2}+2\lambda -3 \right )=0

\left ( \lambda +3 \right )\left ( \lambda -1 \right )^{2}=0

\therefore \lambda =1\:and\:\lambda =-3 


Option 1)

is an empty set.

This option is incorrect.

Option 2)

is a singleton.

This option is incorrect.

Option 3)

contains two elements.

This option is correct.

Option 4)

contains more than two elements.

This option is incorrect.

Posted by

Sabhrant Ambastha

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE