Get Answers to all your Questions

header-bg qa

Let a, b, c be such that  b(a+c) \neq 0.If

then the value of n is

  • Option 1)

    any even integer

  • Option 2)

    any odd integer

  • Option 3)

    any integer

  • Option 4)

    zero

 

Answers (2)

As we learnt in 

Value of determinants of order 3 -

-

 

 \begin{vmatrix} a &a+1&a-1 \\ -b & b+1 &b-1\\ c&c-1& c+1 \end{vmatrix}+\begin{vmatrix} a+1&b+1&c-1 \\ a-1& b-1 &c+1\\ \left ( -1\right )^{n+2}a& \left ( -1\right )^{n+1}b& \left ( -1\right )^{n}c \end{vmatrix}= 0

\begin{vmatrix} a &a+1&a-1 \\ -b & b+1 &b-1\\ c&c-1& c+1 \end{vmatrix}+\begin{vmatrix} a+1&b+1&c-1 \\ a-1& b-1 &c+1\\ \left ( -1\right )^{n}a& \left ( -1\right )^{n}b& \left ( -1\right )^{n}c \end{vmatrix}= 0

\begin{vmatrix} a &a+1&a-1 \\ -b & b+1 &b-1\\ c&c-1& c+1 \end{vmatrix}+(-1)^{n}\begin{vmatrix} a+1&b+1&c-1 \\ a-1& b-1 &c+1\\ a& -b& c \end{vmatrix}= 0

C_{1}\leftrightarrow C_{2}

\begin{vmatrix} a+1 &a&a-1 \\ b+1 & -b &b-1\\ c-1&c& c+1 \end{vmatrix}+(-1)^{n}\begin{vmatrix} a+1&b+1&c-1 \\ a-1& b-1 &c+1\\ a& -b& c \end{vmatrix}= 0

C_{2}\leftrightarrow C_{3}

\begin{vmatrix} a+1 &a-1&a \\ b+1 & b-1 &-b\\ c-1&c+1& c \end{vmatrix}+(-1)^{n}\begin{vmatrix} a+1&b+1&c-1 \\ a-1& b-1 &c+1\\ a& -b& c \end{vmatrix}= 0

\begin{vmatrix} a+1 &a-1&a \\ b+1 & b-1 &-b\\ c-1&c+1& c \end{vmatrix}\ (1+(-1)^{n})=0

\therefore 1+(-1)^{n}=0

So n is any odd integer.


Option 1)

any even integer

Incorrect Option

 

Option 2)

any odd integer

Correct Option

 

Option 3)

any integer

Incorrect Option

 

Option 4)

zero

Incorrect Option

 

Posted by

Sabhrant Ambastha

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE