Get Answers to all your Questions

header-bg qa

Given the field \vec{E}=\left(\frac{K}{r}\right) \hat{a} in cylindrical coordinates then the work needed to move a point charge Q from any radial distance r to a point at twice that radial distance is-

Option: 1

-kQ\ln\2


Option: 2

-kr\ln\2


Option: 3

-2k\ln\ Q


Option: 4

-kQ\ln\ r\bar{}


Answers (1)

best_answer

Since the field has only a radial component 
\bar{dW}=-\bar{QE}.\bar{dE}
           -QE_{r}dr=-\frac{kQ}{r}dr
For the limits of integration use r_{1} and  2r_{1}
        W=-kQ\int_{r_{1}}^{2r_{1}} \frac{dr}{r}
        W=-kQ\left ( lnr \right )_{r_1}^{2r_1}
               =-kQln\left ( 2r_{1}-r_{1} \right )
                =-kQlnr_{1}
           
 

Posted by

Shailly goel

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE