Get Answers to all your Questions

header-bg qa

Heat Transfer and Temperature Change

A piece of copper weighing 500 \mathrm{~g} is heated until its temperature increases from \mathrm{20^{\circ} \mathrm{C} \: to \: 80^{\circ} \mathrm{C}}. Calculate the amount of heat absorbed by the copper. Given: Specific heat of copper \mathrm{c=0.387 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}.}
 

Option: 1

11610 \mathrm{~J}

 


Option: 2

17140 \mathrm{~J}
 


Option: 3

2500 \mathrm{~J}
 


Option: 4

540 \mathrm{~J}


Answers (1)

best_answer

The amount of heat \mathrm{(Q)} absorbed by the copper can be calculated using the formula:

\mathrm{ Q=m c \Delta T }

Given:

\mathrm{ m =500 \mathrm{~g} \quad \text { (mass) } }

\mathrm{ c =0.387 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C} \quad \text { (specific heat) } }

\mathrm{ \Delta T =T_f-T_i=80 C-20 C=60 \mathrm{C} \quad \text { (temperature change) } }

Substitute the values into the formula:

\mathrm{ Q=(500 \mathrm{~g}) \cdot\left(0.387 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}\right) \cdot 60 C }

\mathrm{ Q=11610 \mathrm{~J} }

Therefore, the correct option is 1.

Posted by

Sanket Gandhi

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE