# If y=mx+c is the normal at a point on the parabola y2=8x whose focal distance is 8 units, then  is equal to : Option 1) Option 2) Option 3) Option 4)

As we learnt in

Parametric coordinates of parabola -

$x= at^{2}$

$y= 2at$

- wherein

For the parabola.

$y^{2}=4ax$

and

Focal distance -

The distance of a point on the parabola from the focus.

- wherein

Here $y^2=4ax\: ; \:a=2$

Also given that distance between $P(at^2,2at) \:and \: S=(a,0) \: is\:8\:units$

Thus $(at^2-a)^2 +4a^2t^2=64$

$a(t^2+1) = 8$

Thus  $t^2+1 = 4\Rightarrow t=\sqrt{3}$

$C= 2at(2+t^2)$

Put value $a=2, t=\sqrt{3}$

$\left | C \right |= 10\sqrt{3}$

Option 1)

Incorrect

Option 2)

Incorrect

Option 3)

Correct

Option 4)

Incorrect

### Preparation Products

##### JEE Main Rank Booster 2021

This course will help student to be better prepared and study in the right direction for JEE Main..

₹ 13999/- ₹ 9999/-
##### Knockout JEE Main April 2021 (Easy Installments)

An exhaustive E-learning program for the complete preparation of JEE Main..

₹ 4999/-
##### Knockout JEE Main April 2021

An exhaustive E-learning program for the complete preparation of JEE Main..

₹ 22999/- ₹ 14999/-
##### Knockout JEE Main April 2022

An exhaustive E-learning program for the complete preparation of JEE Main..

₹ 34999/- ₹ 24999/-