Get Answers to all your Questions

header-bg qa

Let f:\left [ -1,3 \right ]\rightarrow R be defined as 

f(x)=\left\{\begin{matrix} \left | x \right |+\left [ x \right ],\: \: \: \: \: \: &-1\leq x<1 \\ x+\left | x \right |, &\: 1\leq x<2 \\ x+\left [ x \right ], &\: \: 2\leq x\leq 3, \end{matrix}\right.

where [t] denotes the greatest integer less than or equal to t. Then, f is discontinuous at : 


 

  • Option 1)

    only one point

  • Option 2)

    only two points

  • Option 3)

    only three points

  • Option 4)

    four or more points

 

Answers (1)

best_answer

f(x)=\left\{\begin{matrix} \left | x \right |+\left [ x \right ],\: \: \: \: \: \: &-1\leq x<1 \\ x+\left | x \right |, &\: 1\leq x<2 \\ x+\left [ x \right ], &\: \: 2\leq x\leq 3, \end{matrix}\right.

f(x)=\left\{\begin{matrix} -x-1, &-1\leq x<0 \\ x+0,&0\leq x<1 \\ 2x, &1\leq x<2 \\ x+2, & 2\leq x<3\\ x+3, & x=3 \end{matrix}\right.

f(x) is discontinuous at x=0,1,3.


Option 1)

only one point

Option 2)

only two points

Option 3)

only three points

Option 4)

four or more points

Posted by

solutionqc

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE