Get Answers to all your Questions

header-bg qa

If f(x) is a differentiable function in the interval (0, ∞) such that f(1) = 1 and  \lim_{t\rightarrow x} \frac{t^{2}f(x)-x^{2}f(t)}{t-x} = 1,  for each x> 0 , then f(3/2) is equal to :

  • Option 1)


  • Option 2)


  • Option 3)


  • Option 4)



Answers (1)


As we learnt in

L - Hospital Rule -

In \:the\:form\:of\:\:\;\frac{0}{0}\:\:and\:\:\frac{\infty }{\infty }\:\:\:we\:differentiate\:\:\frac{N^{r}}{D^{r}}\:\:separately.

\Rightarrow \lim_{x\rightarrow a}\:\:\frac{f(x)}{g(x)}=\lim_{x\rightarrow a}\:\:\frac{f'(x)}{g'(x)}

- wherein

\lim_{x\rightarrow a}\:\:\frac{\frac{d}{dx}\:f(x)}{\frac{d}{dx}\:g(x)}

Where \:\:f(x)\:\:and\:\:g(x)=0


\lim_{t\rightarrow x}\:\frac{t^{2}f\left ( x \right )-x^{2}f\left ( t \right )}{t-x}=1

\lim_{t\rightarrow x}\:\frac{2tf\left ( x \right )-x^{2}f'\left ( t \right )}{1}=1

\therefore 2xf\left ( x \right )-x^{2}f'\left ( x \right )=1

Now, let y=f(x)


\Rightarrow x^{2}\frac{dy}{dx}-2xy=-1

\Rightarrow \frac{dy}{dx}-\frac{2}{x}y=-\frac{1}{x^{2}}

P=-\frac{2}{x}\:and \:Q=-\frac{1}{x^{2}}

\therefore \int Pdx=-2\int \frac{dx}{x}=-2logx = log \frac{1}{x^{2}}

\therefore If e^{log\frac{1}{x^{2}}}=\frac{1}{x^{2}}

\therefore \:Solution\: is

y\cdot \frac{1}{x^{2}}=\int -\frac{1}{x^{2}}\times \frac{1}{x^{2}}\:\:dx=\int \frac{1}{x^{4}}dx

=-\int x^{-4}dx=\frac{-x^{-4+1}}{-4+1}+C


Put, x=1, y=1


\therefore C=1-\frac{1}{3}=\frac{2}{3}


\therefore y=\frac{1}{3x}+\frac{2x^{2}}{3}

Put, x=\frac{3}{2}

y=\frac{1}{3\times \frac{3}{2}}+\frac{2}{3}\times \frac{9}{4}




Option 1)


This option is incorrect.

Option 2)


This option is incorrect.

Option 3)


This option is incorrect.

Option 4)


This option is correct.

Posted by


View full answer

Crack JEE Main with "AI Coach"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support