Get Answers to all your Questions

header-bg qa

If f(x) is a differentiable function in the interval (0, ∞) such that f(1) = 1 and  \lim_{t\rightarrow x} \frac{t^{2}f(x)-x^{2}f(t)}{t-x} = 1,  for each x> 0 , then f(3/2) is equal to :

  • Option 1)


  • Option 2)


  • Option 3)


  • Option 4)



Answers (1)


As we learnt in

L - Hospital Rule -

In \:the\:form\:of\:\:\;\frac{0}{0}\:\:and\:\:\frac{\infty }{\infty }\:\:\:we\:differentiate\:\:\frac{N^{r}}{D^{r}}\:\:separately.

\Rightarrow \lim_{x\rightarrow a}\:\:\frac{f(x)}{g(x)}=\lim_{x\rightarrow a}\:\:\frac{f'(x)}{g'(x)}

- wherein

\lim_{x\rightarrow a}\:\:\frac{\frac{d}{dx}\:f(x)}{\frac{d}{dx}\:g(x)}

Where \:\:f(x)\:\:and\:\:g(x)=0


\lim_{t\rightarrow x}\:\frac{t^{2}f\left ( x \right )-x^{2}f\left ( t \right )}{t-x}=1

\lim_{t\rightarrow x}\:\frac{2tf\left ( x \right )-x^{2}f'\left ( t \right )}{1}=1

\therefore 2xf\left ( x \right )-x^{2}f'\left ( x \right )=1

Now, let y=f(x)


\Rightarrow x^{2}\frac{dy}{dx}-2xy=-1

\Rightarrow \frac{dy}{dx}-\frac{2}{x}y=-\frac{1}{x^{2}}

P=-\frac{2}{x}\:and \:Q=-\frac{1}{x^{2}}

\therefore \int Pdx=-2\int \frac{dx}{x}=-2logx = log \frac{1}{x^{2}}

\therefore If e^{log\frac{1}{x^{2}}}=\frac{1}{x^{2}}

\therefore \:Solution\: is

y\cdot \frac{1}{x^{2}}=\int -\frac{1}{x^{2}}\times \frac{1}{x^{2}}\:\:dx=\int \frac{1}{x^{4}}dx

=-\int x^{-4}dx=\frac{-x^{-4+1}}{-4+1}+C


Put, x=1, y=1


\therefore C=1-\frac{1}{3}=\frac{2}{3}


\therefore y=\frac{1}{3x}+\frac{2x^{2}}{3}

Put, x=\frac{3}{2}

y=\frac{1}{3\times \frac{3}{2}}+\frac{2}{3}\times \frac{9}{4}




Option 1)


This option is incorrect.

Option 2)


This option is incorrect.

Option 3)


This option is incorrect.

Option 4)


This option is correct.

Posted by


View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE