Get Answers to all your Questions

header-bg qa

 If the sum of the first ten terms of the series
 \left ( 1\frac{3}{5} \right )^{2}+\left ( 2\frac{2}{5} \right )^{2}+\left ( 3\frac{1}{5} \right )^{2}+4^{2}+\left ( 4\frac{4}{5} \right )^{2}+.........is\frac{16}{5}m

then m is equal to:

  • Option 1)

    102

  • Option 2)

    101

  • Option 3)

    100

  • Option 4)

    99

 

Answers (2)

best_answer

As we learnt in 

Summation of series of natural numbers -

\sum_{k=1}^{n}K^{2}= \frac{1}{6}n\left ( n+1 \right )\left ( 2n+1 \right )
 

- wherein

Sum of  squares of first n natural numbers

1^{2}+2^{2}+3^{2}+4^{2}+------+n^{2}= \frac{n(n+1)\left ( 2n+1 \right )}{6}

 

 \left ( 1\frac{3}{5} \right )^{2}+\left ( 2\frac{2}{5} \right )^{2}+\left ( 3\frac{3}{5} \right )^{2}+4^{2}+\left (4\frac{4}{5} \right )^{2}----is \frac{16}{5}n

\Rightarrow \left ( \frac{8}{5} \right )^{2}+\left ( \frac{12}{5} \right )^{2}+\left ( \frac{16}{5} \right )^{2}+\left ( \frac{20}{5} \right )^{2}+ -----

\therefore\frac{1}{25} \left [ 8^{2}+12^{2}+16^{2}+20^{2}+ --- \right ]

\therefore\frac{1}{25}\times4^{}2 \left [ 2^{2}+3^{2}+4^{2}+5^{2}+--- \right ]

=\frac{16}{25} \left [ 1^{2}+2^{2}+3^{}2+-----11^{2}-1\right ]

\Rightarrow \frac{16}{25}\left [ \frac{11\times12\times23}{6}-1 \right ]=\frac{16}{5}n

\therefore 11\times46-1=5n

      506-1=5n

      505=5n

\therefore n=101

 

 


Option 1)

102

Incorrect option

Option 2)

101

Correct option

Option 3)

100

Incorrect option

Option 4)

99

Incorrect option

Posted by

Aadil

View full answer

Crack JEE Main with "AI Coach"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support
jee_ads