For x\equiv \left ( 0,\frac{3}{2} \right ), let f(x)=\sqrt{x},g(x)=\tan x and h(x)=\frac{1-x^{2}}{1+x^{2}}. If \phi \left ( x \right )=\left ( \left (hof \right )og\left ( x \right ) \right ), then \phi \left ( \frac{\pi }{3} \right ) is equal to : 

 

  • Option 1)

    \tan \frac{11\pi }{12}   

  • Option 2)

       \tan \frac{7\pi }{12}         

  • Option 3)

     \tan \frac{5\pi }{12}     

  • Option 4)

     \tan \frac{\pi }{12}

 

Answers (1)

f(x)=\sqrt{x}

g(x)=\tan x

h(x)=\frac{1-x^{2}}{1+x^{2}}

fog(x)=\sqrt{\tan x}

hofog(x)=h(\sqrt{\tan x})=\frac{1-\tan x}{1+\tan x}=\tan \left ( \frac{\pi }{4}-x \right )

\phi \left ( x \right )=\tan \left ( \frac{\pi }{4}-x \right )

\phi \left ( \frac{\pi }{3} \right )=\tan \left ( \frac{\pi }{4}-\frac{\pi }{3} \right )=\tan \left ( -\frac{\pi }{12} \right )=-\tan \frac{\pi }{12}

               =\tan \left ( \pi -\frac{\pi }{12} \right )

               =\tan \frac{11\pi }{12}


Option 1)

\tan \frac{11\pi }{12}   

Option 2)

   \tan \frac{7\pi }{12}         

Option 3)

 \tan \frac{5\pi }{12}     

Option 4)

 \tan \frac{\pi }{12}

Preparation Products

Knockout JEE Main April 2021

An exhaustive E-learning program for the complete preparation of JEE Main..

₹ 22999/- ₹ 14999/-
Buy Now
Knockout JEE Main April 2022

An exhaustive E-learning program for the complete preparation of JEE Main..

₹ 34999/- ₹ 24999/-
Buy Now
Test Series JEE Main Sept 2020

Take chapter-wise, subject-wise and Complete syllabus mock tests and get in depth analysis of your test..

₹ 4999/- ₹ 1999/-
Buy Now
Knockout JEE Main Sept 2020

An exhaustive E-learning program for the complete preparation of JEE Main..

₹ 12999/- ₹ 6999/-
Buy Now
Rank Booster JEE Main 2020

This course will help student to be better prepared and study in the right direction for JEE Main..

₹ 9999/- ₹ 4999/-
Buy Now
Exams
Articles
Questions