If both the mean and the standard deviation of 50 observations 

x_1,x_2,x_3,.................,x_{50} are equal to 16 ,  then the mean

of (x_1-4)^{2},(x_2-4)^{2},............,(x_{50}-4)^{2} is : 

  • Option 1)

    400

  • Option 2)

    380

  • Option 3)

    525

  • Option 4)

    480

 

Answers (1)
V Vakul

50 observations 

x_1,x_2,x_3,.................,x_{50} 

mean,\bar{x}=\frac{\sum x_i}{50}=16.....................(1)

variance,\sigma ^{2}=\frac{\sum x_i^{2}}{50}-(\bar{x})^{2}=16^{2}

=>\frac{\sum x_i^{2}}{50}=16^{2}+(\bar{x})^{2}=16^{2}+(16)^{2}=512......................(2)

So, mean value of (x_1-4)^{2},(x_2-4)^{2},.........................,(x_{50}-4)^{2}

\\=> \sum\frac{(x_i-4)^{2}}{50}=\frac{\sum x_i^2-8\sum x_i+16\times 50}{50}\\\frac{\sum x_i^2}{50}-\frac{8\sum x_i}{50}+16\\512-8\times16+16\\=400


Option 1)

400

Option 2)

380

Option 3)

525

Option 4)

480

Preparation Products

Knockout JEE Main Sept 2020

An exhaustive E-learning program for the complete preparation of JEE Main..

₹ 12999/- ₹ 6999/-
Buy Now
Rank Booster JEE Main 2020

This course will help student to be better prepared and study in the right direction for JEE Main..

₹ 9999/- ₹ 4999/-
Buy Now
Test Series JEE Main Sept 2020

Take chapter-wise, subject-wise and Complete syllabus mock tests and get in depth analysis of your test..

₹ 4999/- ₹ 1999/-
Buy Now
Knockout JEE Main April 2021

An exhaustive E-learning program for the complete preparation of JEE Main..

₹ 22999/- ₹ 14999/-
Buy Now
Knockout JEE Main April 2022

An exhaustive E-learning program for the complete preparation of JEE Main..

₹ 34999/- ₹ 24999/-
Buy Now
Exams
Articles
Questions