Get Answers to all your Questions

header-bg qa

If \alpha ,\beta are roots of x^{2}+2x+5= 0, then the equation whose roots are \frac{\alpha }{\beta }  &  \frac{\beta }{\alpha }  is 

  • Option 1)

    5x^{2}+6x-5= 0

  • Option 2)

    5x^{2}+6x+5= 0

  • Option 3)

    5x^{2}-6x-5= 0

  • Option 4)

    5x^{2}-6x+5= 0

 

Answers (1)

best_answer

\alpha +\beta =-2,\: \alpha \beta =5

S=\frac{\alpha }{\beta }+\frac{\beta }{\alpha }=\frac{\alpha ^{2}+\beta ^{2}}{\alpha \beta }=\frac{\left ( \alpha +\beta \right )^{2}-2\alpha \beta }{\alpha \beta }=\frac{4-10}{5}

\Rightarrow \: S=\frac{-6}{5}

p= \frac{\alpha }{\beta }\cdot \frac{\beta }{\beta }=1\: \Rightarrow \, p=1

\therefore Equation is : x^{2}-\left ( \frac{-6}{5} \right )x+1=0

\Rightarrow \: 5x^{2}+6x+5=0

\therefore  Option (B)

 

To form a Quadratic Equation given the roots -

x^{2}-Sx+P= 0

- wherein

S = Sum of roots

P = Product of roots

 

 


Option 1)

5x^{2}+6x-5= 0

This is incorrect

Option 2)

5x^{2}+6x+5= 0

This is correct

Option 3)

5x^{2}-6x-5= 0

This is incorrect

Option 4)

5x^{2}-6x+5= 0

This is incorrect

Posted by

Himanshu

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE