If  f:R\rightarrow R  is a differentiable function and F(2)=6   , then \lim_{x\rightarrow 2}\int_{6}^{f(x)}\frac{2t\:dt}{(x-2)}   is :

 

 

 

  • Option 1)

    24f^{'}(2)

  • Option 2)

    2f^{'}(2)

  • Option 3)

    0

  • Option 4)

    12f^{'}(2)

 

Answers (1)

\\f(2)=6\\\\\:\lim_{x\rightarrow 2}\int_{6}^{f(x)}\frac{2t.dt}{(x-2)}\\\\\:=\lim_{x\rightarrow 2}\frac{t^{2}}{x-2}\; |_{6}^{f(x)}=\lim_{x\rightarrow 2}\frac{\left ( f(x) \right )^{2}-(6)^{2}}{(x-2)}\\\\\:

\\=\lim_{x\rightarrow 2}\frac{2f(x)f^{'}(x)}{1}\\\\\:=2(x).f^{'}(x)\\\\\:2 \times 6\times f^{'}(2)=12f^{'}(2)


Option 1)

24f^{'}(2)

Option 2)

2f^{'}(2)

Option 3)

0

Option 4)

12f^{'}(2)

Preparation Products

Knockout JEE Main Sept 2020

An exhaustive E-learning program for the complete preparation of JEE Main..

₹ 12999/- ₹ 6999/-
Buy Now
Rank Booster JEE Main 2020

This course will help student to be better prepared and study in the right direction for JEE Main..

₹ 9999/- ₹ 4999/-
Buy Now
Test Series JEE Main Sept 2020

Take chapter-wise, subject-wise and Complete syllabus mock tests and get in depth analysis of your test..

₹ 4999/- ₹ 1999/-
Buy Now
Knockout JEE Main April 2021

An exhaustive E-learning program for the complete preparation of JEE Main..

₹ 22999/- ₹ 14999/-
Buy Now
Knockout JEE Main April 2022

An exhaustive E-learning program for the complete preparation of JEE Main..

₹ 34999/- ₹ 24999/-
Buy Now
Exams
Articles
Questions