Get Answers to all your Questions

header-bg qa

The equation of a tangent to the parabola y^{2}=8x\; is\; y=x+2. The point on this line from which the other tangent to the parabola is perpendicular to the given tangent is

  • Option 1)

    (2, 4)

  • Option 2)

    (–2, 0)

  • Option 3)

    (–1, 1)

  • Option 4)

    (0, 2)

 

Answers (1)

As we learnt in 

 

Equation of tangent -

y= mx+\frac{a}{m}

- wherein

Tengent to y^{2}=4ax is slope form.

 

 y^{2}=8x;   Tangent is y=x+2

Slope of tangent, m=1

When two lines are perpendicular to each other,

m_{1}\times 1=-1\:\:\:\Rightarrow m_{1}=-1

Let the other tangent be y=-x+c

Now we have y=mx+c   touching y^{2}=4ax

c=\frac{a}{m},\:\:\:\:a=2

c=-2

y=-x-2

y=x+2;\:\:y=-x-2

So, x+2=-x-2

x=-2

Point is (-2, 0)

 


Option 1)

(2, 4)

This option is incorrect.

Option 2)

(–2, 0)

This option is correct.

Option 3)

(–1, 1)

This option is incorrect.

Option 4)

(0, 2)

This option is incorrect.

Posted by

Sabhrant Ambastha

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE