Get Answers to all your Questions

header-bg qa

The solution of the differential equation   \frac{dy}{dx}=\frac{x+y}{x}    satisfying the condition y(1)=1  is

  • Option 1)

    y=x\; \ln \; x+x

  • Option 2)

    y= \ln \; x+x

  • Option 3)

    y=x\; \ln \; x+x^{2}

  • Option 4)

    y=x\, e^{(x-1)}


Answers (1)


As we learnt in 


Linear Differential Equation -

\frac{dy}{dx}+Py= Q

- wherein

P, Q are functions of x alone.



\Rightarrow \frac{dy}{dx}-\frac{y}{x}=1

Put    P=-\frac{1}{x}\:\:,\:\:Q=1

\int -\frac{1}{x}\:dx=-\log x=\log \frac{1}{x}


Solution is y\:.\:\frac{1}{x}=\int \frac{1}{x}dx=\log x +C

\frac{1}{1}=\log 1+C\:\:\:\Rightarrow C=1

\therefore y=x+ \log x

Option 1)

y=x\; \ln \; x+x

This option is correct.

Option 2)

y= \ln \; x+x

This option is incorrect.

Option 3)

y=x\; \ln \; x+x^{2}

This option is incorrect.

Option 4)

y=x\, e^{(x-1)}

This option is incorrect.

Posted by


View full answer

Crack JEE Main with "AI Coach"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support