Get Answers to all your Questions

header-bg qa

  \lim_{x\rightarrow 3}\tfrac{\sqrt{3x}-3}{\sqrt{2x-4}- \sqrt{2}}        is equal to :

  • Option 1)


  • Option 2)


  • Option 3)


  • Option 4)



Answers (1)


As we learnt in

Method of Rationalisation -

Rationalisation method is used when we have RADICAL SIGNS in an expression.(like  1/2,  1/3 etc) and there exists a negative sign between two terms of an algebraic expression.

- wherein

\lim_{x\rightarrow a}\:\frac{x-a}{\sqrt{x}-\sqrt{a}}

\therefore \:\frac{(x-a)(\sqrt{x}+\sqrt{a})}{(\sqrt{x}-\sqrt{a})(\sqrt{x}+\sqrt{a})}





 \lim_{x\rightarrow 3}\frac{\sqrt{3x}-3}{\sqrt{2x-4}-\sqrt{2}}

\Rightarrow \lim_{x\rightarrow 3}\frac{\sqrt{3x}-3}{\sqrt{2x-4}-\sqrt{2}}\times \frac{\sqrt{2x-4}+\sqrt{2}}{\sqrt{2x-4}+\sqrt{2}}\times \frac{\sqrt{3x}+3}{\sqrt{3x}+3}

\Rightarrow \lim_{x\rightarrow 3}\frac{3x-9}{2x-4-2}\times \frac{\sqrt{2x-4}+\sqrt{2}}{\sqrt{3x}+3}

\Rightarrow \lim_{x\rightarrow 3}\frac{3\left ( x-3 \right )}{2\left ( x-3 \right )}\times \frac{\sqrt{2x-4}+\sqrt{2}}{\sqrt{3x}+3}

\frac{3}{2}\cdot \frac{\sqrt{2\times 3-4}+\sqrt{2}}{\sqrt{3\times 3}+3}

\frac{3}{2}\times \frac{\sqrt{2}+\sqrt{2}}{6}

\Rightarrow \frac{2\sqrt{2}}{4}= \frac{\sqrt{2}}{2}= \frac{1}{\sqrt{2}}

Option 1)


This option is incorrect.

Option 2)


This option is correct.

Option 3)


This option is incorrect.

Option 4)


This option is incorrect.

Posted by


View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE