If the eccentricity of the standard hyperbola passing through the point (4,6) is 2, then the equation of the tangent to the hyperbola at \left ( 4,6 \right ) is  :

  • Option 1)

    x-2y+8=0

  • Option 2)

    2x-3y+10=0

  • Option 3)

    2x-y-2=0

     

  • Option 4)

    3x-2y=0

 

Answers (1)


Standard equation of hyperbola 

\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1

passes via point \left ( 4,6 \right )

\frac{16}{a^{2}}-\frac{36}{b^{2}}=1\cdots (1)

Also, given eccentricit = 2

e^{2}=1+\frac{b^{2}}{a^{2}}=4

a^{2}=4\: \: ,\: \: b^{2}=12

Equation of tangent.

\frac{xx_1}{a^{2}}-\frac{yy_1}{b^{2}}=1

x-\frac{y}{2}=1

2x-y-2=0


Option 1)

x-2y+8=0

Option 2)

2x-3y+10=0

Option 3)

2x-y-2=0

 

Option 4)

3x-2y=0

Preparation Products

Knockout JEE Main July 2020

An exhaustive E-learning program for the complete preparation of JEE Main..

₹ 12999/- ₹ 6999/-
Buy Now
Rank Booster JEE Main 2020

This course will help student to be better prepared and study in the right direction for JEE Main..

₹ 9999/- ₹ 4999/-
Buy Now
Test Series JEE Main July 2020

Take chapter-wise, subject-wise and Complete syllabus mock tests and get in depth analysis of your test..

₹ 4999/- ₹ 1999/-
Buy Now
Knockout JEE Main April 2021

An exhaustive E-learning program for the complete preparation of JEE Main..

₹ 17999/- ₹ 11999/-
Buy Now
Knockout JEE Main April 2022

An exhaustive E-learning program for the complete preparation of JEE Main..

₹ 34999/- ₹ 19999/-
Buy Now
Exams
Articles
Questions