The primitive of \log x will be

  • Option 1)

    x\log (e+x) +c

  • Option 2)

    x\log \frac{e}{x} +c

  • Option 3)

    x\log \frac{x}{e} +c

  • Option 4)

    x\log ex +c

 

Answers (1)
V Vakul

As learnt in

Integration By PARTS -

Let u and v are two functions then 

\int u\cdot vdx=u\int vdx-\int \left ( \frac{du}{dx}\int vdx \right )dx

- wherein

Where u is the Ist function v is he IInd function

 

 

\int \log x d x= \int 1. \log xdx \ \ \ \ \\

 

                       = \int 1. \log x d x -\int (\frac{d}{dx} (\log x)\int 1.dx) dx

                       = x \log x \int \frac{1}{x}. xdx

                       = x \log x-x =x log\frac{x}{e}+c   


Option 1)

x\log (e+x) +c

This option is incorrect.

Option 2)

x\log \frac{e}{x} +c

This option is incorrect.

Option 3)

x\log \frac{x}{e} +c

This option is correct.

Option 4)

x\log ex +c

This option is incorrect.

Preparation Products

Knockout BITSAT 2020

It is an exhaustive preparation module made exclusively for cracking BITSAT..

₹ 4999/- ₹ 1999/-
Buy Now
Knockout BITSAT 2021

It is an exhaustive preparation module made exclusively for cracking BITSAT..

₹ 4999/- ₹ 2999/-
Buy Now
Knockout BITSAT-JEE Main 2021

An exhaustive E-learning program for the complete preparation of JEE Main and Bitsat.

₹ 27999/- ₹ 16999/-
Buy Now
Knockout BITSAT-JEE Main 2020

An exhaustive E-learning program for the complete preparation of JEE Main and Bitsat.

₹ 14999/- ₹ 7999/-
Buy Now
Exams
Articles
Questions