Get Answers to all your Questions

header-bg qa

\int_{-\pi }^{\pi }\; \frac{2x(1+sin\, x)}{1+cos^{2}x}\: dx\; is

  • Option 1)

    \pi ^{2}/4\;

  • Option 2)

    \; \pi ^{2}\;

  • Option 3)

    \; 0\; \;

  • Option 4)

    \; \pi /2

 

Answers (1)

As we learnt in 

 

Properties of definite integration -

If f\left ( x \right ) is an EVEN function of x: then integral of the function from - a to a is the same as twice the integral of the same function from o to a.

\int_{-a}^{a}f(x)dx= 2\left \{ \int_{o}^{a} f(x)dx\right \}

 

- wherein

Check even function f(-x)=f(x) and symmetrical about y axis.

 

 And,

 

Properties of Definite Integration -

If f(x) is an odd function of x then integral of the function from -a to a is ZERO

\int_{-a}^{a}f(x)dx=0
 

- wherein

Check

Odd function f(-x)= -f(x)

 

 And,

 

Properties of Definite Integration -

\int_{0}^{2a}f(x)dx= \int_{0}^{a}\left [ f(x)+f(-x) \right ]dx

= \left\{\begin{matrix} 2\int_{0}^{a}f(x)dx & if f(2a-x)=f(x)\\ 0 &if f(2a-x)=-f(x) \end{matrix}\right.

-

 

 I=\int_{-\pi }^{\pi }\frac{2x(1+\sin x)dx}{1+\cos ^{2}x}

I=\int_{0}^{\pi }\left ( \frac{2x(1+\sin x)-2x+2x\sin x}{(1+\cos ^{2}x)} \right )dx

I=\int_{0}^{\pi}\frac{4xsin x}{(1+cos^{2}x)}dx

I=\int_{0}^{\frac{\pi }{2}}\frac{4\sin x}{1+\cos ^{2}x}(x+\pi-x )dx

I=4\pi \int_{0}^{\frac{\pi }{2}}\frac{\sin x\:dx}{1+\cos ^{2}x}

I=4\pi \left [ \tan ^{-1} \right( \cos x)]_{0}^{\frac{\pi }{2}}

I=4\pi \left [ 0+\frac{\pi }{4} \right ]=\pi ^{2}

 


Option 1)

\pi ^{2}/4\;

This option is incorrect 

Option 2)

\; \pi ^{2}\;

This option is correct 

Option 3)

\; 0\; \;

This option is incorrect 

Option 4)

\; \pi /2

This option is incorrect 

Posted by

Vakul

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE