Get Answers to all your Questions

header-bg qa

If  then adj \left ( 3A^{2} +12A\right )  is equal to :

 

  • Option 1)

  • Option 2)

  • Option 3)

  • Option 4)

 

Answers (1)

best_answer

As we leant in

Multiplication of matrices -

-

 

 

 

Adjoint of a square matrix -

Transpose of the matrix of co-factors of elements of A is called the adjoint of A

- wherein

 

 

A=\begin{bmatrix} 2 & -4\\ -4 & 1 \end{bmatrix}

\therefore A^2=\begin{bmatrix} 2 & -3\\ -4 & 1 \end{bmatrix} \begin{bmatrix} 2 & -3\\ -4 & 1 \end{bmatrix} = \begin{bmatrix} 16 & -9\\ -12 & 13 \end{bmatrix}

3 A^{2}+12 A=\begin{bmatrix} 48 & -27\\ -36 & 39 \end{bmatrix} + \begin{bmatrix} 24 & -36\\ -48 & 12 \end{bmatrix} \\ = \begin{bmatrix} 72 & -63\\ -84 & 51 \end{bmatrix}  

adj A= Transpose of cofactors

so that \begin{bmatrix} 51 & 63\\ 84 & 72 \end{bmatrix}


Option 1)

This option is correct.

Option 2)

This option is incorrect.

Option 3)

This option is incorrect.

Option 4)

This option is incorrect.

Posted by

prateek

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE