Get Answers to all your Questions

header-bg qa

 Let the population of rabbits surviving at a time t be governed by the differential equation

\frac{dp\left ( t \right )}{dt}= \frac{1}{2}p\left ( t \right )-200 . If  p\left ( 0 \right )= 100,then\: p\left ( t \right ) equal to:

  • Option 1)

    600-500\: e^{t/2}

  • Option 2)

    400-300\: e^{-t/2}

  • Option 3)

    400-300\: e^{t/2}

  • Option 4)

    300-200\: e^{-t/2}

 

Answers (1)

best_answer

As we learnt in 

Solution of Differential Equation -

\frac{\mathrm{d}y }{\mathrm{d} x} =f\left ( ax+by+c \right )

put

 Z =ax+by+c

 

 

- wherein

Equation with convert to

\int \frac{dz}{bf\left ( z \right )+a} =x+c

 

 

 

 \int \frac{dp(t)}{\frac{1}{2}p(t)-200}=\int dt

\Rightarrow 2\int_{100}^{p(t)} \frac{dp(t)}{p(t)-400}=\int_{t=0}^{t=t} dt 

\Rightarrow log|p(t)-400|\int_{100}^{p(t)}=\frac{t}{2}\left.\begin{matrix} & \\ & \end{matrix}\right|_{0}^{t}=\frac{t}{2}

\therefore \log \left (400 -p(t) \right ) - \log 300 = \frac{t}{2}

\therefore \log \frac{(400 -p(t))}{300}= \frac{t}{2}

\therefore 400 -p(t)=e^{t/2}\times 300

\therefore p(t)=400 -300 \ e^{t/2}

 

 


Option 1)

600-500\: e^{t/2}

This option is incorrect.

Option 2)

400-300\: e^{-t/2}

This option is incorrect.

Option 3)

400-300\: e^{t/2}

This option is correct.

Option 4)

300-200\: e^{-t/2}

Posted by

Aadil

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE