If\; \; a_{1},a_{2},a_{3},............,a_{n}...are\; in\; G.P., then\; the \; determinant

 

  • Option 1)

    0

  • Option 2)

    1

  • Option 3)

    2

  • Option 4)

    4

 

Answers (1)

As we learnt in 

General term of a GP -

T_{n}= ar^{n-1}
 

- wherein

a\rightarrow first term

r\rightarrow common ratio

 

Given a1, a2,  a3,  ...a are in A.P

 

\Delta = \begin{vmatrix} log a_{n}\: log a_{n+1}\: log a_{n+2} & & \\ log a_{n+3}\: log a_{n+4}\: log a_{n+5} & & \\ log a_{n+6}\: log a_{n+7}\: log a_{n+8} & & \end{vmatrix}

\therefore a =arn-1 ,  a n+2  =arn+1

a n+1  =arn ,  a n+3  =arn+2

\therefore  a n+8=arn+7

\Delta =\begin{vmatrix} log\:a_{1}r^{n-1}\: log\:a_{1}r^{n}\:log\:a_{1}r^{n+1} & & \\ log\:a_{1}r^{n+2}\: log\:a_{1}r^{n+3}\:log\:a_{1}r^{n+4} & & \\ log\:a_{1}r^{n+5}\: log\:a_{1}r^{n+6}\:log\:a_{1}r^{n+7} & & \end{vmatrix}

\Delta =\begin{vmatrix} log\:a_{1}+({n-1})log r\ \;log\: a_{1}+nlogr\ \; log\:a_{1}(n+1)log\:r & & \\ log\:a_{1}+(n+2)logr\ \: log\:a_{1}+(n+3)\:logr \ log a_{1}+(n+4)logr & & \\ log\:a_{1}+(n+5)logr\ \: log\:a_{1}(n+6)logr\ \:loga_{1}(n+7)logr & & \end{vmatrix}

\Deltac+ c-c& c+ c3-c2

\begin{vmatrix} log\ a_{1}+(n-1)log r \ log r \ \ logr & & \\ log\ a_{1}+(n+2)log r \ log r \ \ logr & & \\ log\ a_{1}+(n+3)log r \ log r \ \ logr & & \end{vmatrix}=0

Since two columns are equal


Option 1)

0

this is correct option

Option 2)

1

this is incorrect option

Option 3)

2

this is incorrect option

Option 4)

4

this is incorrect option

Preparation Products

Knockout JEE Main April 2021

An exhaustive E-learning program for the complete preparation of JEE Main..

₹ 22999/- ₹ 14999/-
Buy Now
Knockout JEE Main April 2022

An exhaustive E-learning program for the complete preparation of JEE Main..

₹ 34999/- ₹ 24999/-
Buy Now
Test Series JEE Main April 2021

Take chapter-wise, subject-wise and Complete syllabus mock tests and get in depth analysis of your test..

₹ 6999/- ₹ 4999/-
Buy Now
JEE Main Rank Booster 2021

This course will help student to be better prepared and study in the right direction for JEE Main..

₹ 13999/- ₹ 9999/-
Buy Now
Test Series JEE Main April 2022

Take chapter-wise, subject-wise and Complete syllabus mock tests and get an in-depth analysis of your test..

₹ 6999/-
Buy Now
Boost your Preparation for JEE Main 2021 with Personlized Coaching
 
Exams
Articles
Questions