Get Answers to all your Questions

header-bg qa

The system of linear equations

x +λy −z = 0
λx − y − z = 0
x + y − λz = 0

has a non-trivial solution for :

 

  • Option 1)

    infinitely many values of λ.

     

  • Option 2)

    exactly one value of λ.

     

  • Option 3)

    exactly two values of λ.

     

  • Option 4)

    exactly three values of λ.

     

 

Answers (3)

best_answer

As we learnt in 

Cramer's rule for solving system of linear equations -

When \Delta =0  and \Delta _{1}=\Delta _{2}=\Delta _{3}=0 ,

then  the system of equations has infinite solutions.

- wherein

a_{1}x+b_{1}y+c_{1}z=d_{1}

a_{2}x+b_{2}y+c_{2}z=d_{2}

a_{3}x+b_{3}y+c_{3}z=d_{3}

and 

\Delta =\begin{vmatrix} a_{1} &b_{1} &c_{1} \\ a_{2} & b_{2} &c_{2} \\ a_{3}&b _{3} & c_{3} \end{vmatrix}

\Delta _{1},\Delta _{2},\Delta _{3} are obtained by replacing column 1,2,3 of \Delta by \left ( d_{1},d_{2},d_{3} \right )  column

 

\begin{vmatrix} 1 & \lambda &-1 \\ \lambda & -1 &-1 \\ 1 & 1 & -\lambda \end{vmatrix}=0

\Rightarrow 1\left ( \lambda +1 \right )- \lambda \left ( 1-\lambda ^{2} \right )- 1\left ( 1+\lambda \right )= 0

\Rightarrow \left ( 1+\lambda \right )\left [ \lambda ^{2}-\lambda \right ]=0

\Rightarrow \lambda = -1,\ 0,\ 1 


Option 1)

infinitely many values of λ.

 

This option is incorrect.

Option 2)

exactly one value of λ.

 

This option is incorrect.

Option 3)

exactly two values of λ.

 

This option is incorrect.

Option 4)

exactly three values of λ.

 

This option is correct.

Posted by

divya.saini

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE

Solution Video

Posted by

admin

View full answer