An HCl molecule has rotational, translational and vibrational motions. If the rms velocity of HCl molecules in its gaseous phase is \overline{v}m is its mass and k_{B} is Boltzmann constant, then its temperature will be

  • Option 1)

      \frac{m\overline{v}^{2}}{6k_{B}}

  • Option 2)

      \frac{m\overline v^{2}}{3k_{B}}   

  • Option 3)

    \frac{m\overline v^{2}}{7k_{B}}

  • Option 4)

      \frac{m\overline v^{2}}{5k_{B}}

 

Answers (1)

HCl has 3 translational , 2 rotational and 1 vibratonal degree of freedom

 

E _{internal} = No. of degrees of freedom \times \frac{1}{2}K_{B}T

                =\; \; 6\times \frac{1}{2}\; K_{B}T

\frac{1}{2}\; m\overline{v}^{2}=6\times \frac{1}{2}\; K_{B}T

T=\frac{m\overline{v^{2}}}{6k_{B}}


Option 1)

  \frac{m\overline{v}^{2}}{6k_{B}}

Option 2)

  \frac{m\overline v^{2}}{3k_{B}}   

Option 3)

\frac{m\overline v^{2}}{7k_{B}}

Option 4)

  \frac{m\overline v^{2}}{5k_{B}}

Exams
Articles
Questions