Get Answers to all your Questions

header-bg qa

Let f:[0,2]\rightarrow \mathbb{R} be a twice differentiable function such that f"(x)>0, for all x\epsilon \left ( 0,2 \right ). If \phi (x)=f(x)+f(2-x), then \phi is :
 

  • Option 1)

    decreasing on (0,1) and increasing on (1,2)

  • Option 2)

    increasing on (0,2)

  • Option 3)

    increasing on (0,1) and decreasing on (1,2).

     

  • Option 4)

    decreasing on (0,2).

 

Answers (1)

best_answer

f :[0,2]\rightarrow \mathbb{R} twice differentiable

Such that. f"(x)>0\; \; \vee \; \; x\epsilon (0,2)

If \phi (x)=f(x)+f(2-x)\; then\; \phi

for \phi (x) to be increasing \phi^{1} (x)>0

\phi^{1} (x)=f^{1}(x)-f^{1}(2-x)

Since f"(x)>0\Rightarrow f^{1}(x) in increasing

So for x\epsilon (0,1)

f^{1}(x)-f^{1}(2-x)<0

hence \phi ^{1}(x)<0

and for x\epsilon (1,2)

f^{1}(x)-f^{1}(2-x)>0

\Rightarrow \phi ^{1}(x)>0

hence \phi (a) increasing

 


Option 1)

decreasing on (0,1) and increasing on (1,2)

Option 2)

increasing on (0,2)

Option 3)

increasing on (0,1) and decreasing on (1,2).

 

Option 4)

decreasing on (0,2).

Posted by

solutionqc

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE