Get Answers to all your Questions

header-bg qa

 The moment of inertia of a uniform cylinder of length land radius R about its perpendicular bisector isI.  What is the ratio\frac{l}{R}such that the moment of inertia is minimum ?


  • Option 1)


  • Option 2)


  • Option 3)


  • Option 4)



Answers (1)


As we learnt in

Moment of inertia of uniform rod of length(l) -

I= \frac{Ml^{2}}{12}

- wherein

About axis passing through its centre & perpendicular to its length.


 We know that solid cylinder about an axis which is perpendicular bisector.

I=\frac{mR^{2}}{4}+\frac{mR^{2}}{12}=\frac{m}{4}\left [ R^{2}+\frac{l^{2}}{3} \right ]

I=\frac{m}{4}\left [ \frac{\pi lR^{2}}{\pi l}+\frac{R^{2}}{3} \right ]=\frac{m}{4}\left [ \frac{v}{\pi l}+\frac{l^{2}}{3} \right ]

\frac{dx}{dl}=0    \Rightarrow\ \;\frac{m}{4}\left [ \frac{-v}{\pi l^{2}}+\frac{2l}{3} \right ]=0\ \;\Rightarrow\ \;\frac{-v}{\pi l^{2}}+\frac{2l}{3}=0

\frac{v}{\pi l^{2}}=\frac{2l}{3}\ \Rightarrow \; v=\frac{2\pi l^{3}}{3}

\pi R^{2}l=2\frac{\pi l^{3}}{3}\ \; \Rightarrow\ \; R^{2}=\frac{2l^{2}}{3}



Option 1)


This is the correct option.

Option 2)


This is an incorrect option.

Option 3)


This is an incorrect option.

Option 4)


This is an incorrect option.

Posted by


View full answer

Crack JEE Main with "AI Coach"

  • HD Video Lectures
  • Unlimited Mock Tests
  • Faculty Support