Get Answers to all your Questions

header-bg qa

Let a1, a2, a3, ....., a49 be in A.P. such that
\sum_{k=0}^{12}

a4k+1 = 416 and    a_{9}  + a_{43} = 66 . If a_{2}^{1} + a_{2}^{2} + ...... + a_{2}^{17}= 140 m, then m is equal to : 

  • Option 1)

    33

  • Option 2)

    66

  • Option 3)

    68

  • Option 4)

    34

 

Answers (2)

best_answer

a_{1}+a_{5}+a_{9}+.........+ a_{49}= 416

If the common diff = d

\Rightarrow \frac{13}{2}\left [ 2a +12\times 4d\right ]= 416

a+24d =32 \rightarrow \left ( 1 \right )

 

Also a_{9}+ a_{43}= a+ 8d+ a+42d=66

\Rightarrow a+25d = 33

Thus a= 8 , d= 1

thus  a_{1}^{2}+a_{2}^{2}+....+a_{17}^{2}Thus \sum_{r=1}^{17} \left ( 7+r \right )^{2} = \sum_{r=1}^{17} 49+14r+r^{2}= 4760 = 140m

Thus m= 34

 

Sum of n terms of an AP -

S_{n}= \frac{n}{2}\left [ 2a +\left ( n-1 \right )d\right ]

 

and

Sum of n terms of an AP

 

S_{n}= \frac{n}{2}\left [ a+l\right ]

- wherein

a\rightarrow first term

d\rightarrow common difference

n\rightarrow number of terms

 

 

 

 

 

 


Option 1)

33

Option 2)

66

Option 3)

68

Option 4)

34

Posted by

Himanshu

View full answer

JEE Main high-scoring chapters and topics

Study 40% syllabus and score up to 100% marks in JEE